Бизнес портал - Гарнизон

Теневые маски изготавливают из инвара. Инвар (InVar) - магнитный сплав железа с никелем. Магнитный сплав на основе железа Никель, кобальт и их сплавы

В заключение мы остановимся на некоторых магнитных свой­ствах железа и его сплавов. Вообще говоря, в обычной практике мы пока еще редко пользуемся железом в чистом виде, а применяем его соединения или сплавы. Наиболее часто встречающимися примесями являются углерод (С) и сера (S); от этих примесей избавиться чрезвычайно трудно.

За последние годы техника изготовления химически чистого железа начала развиваться. Для получения чистого металла железо электролитически раффинируют, а потом переплавляют в вакууме для освобождения от водорода и других газов. Полу­ченное таким путем железо обладает очень ценными магнитными качествами, но пока сравнительно дорого. Нижеприведенные цифры потерь на гистерезис (в эргах на см 3 , на 1 цикл) позволяют судить о качествах вакуумного железа.

В настоящее время в электротехнике наиболее широко применя­ются сплавы железа с кремнием (Si).

В нижеследующей таблице в виде примера того, что в этом случае может быть достигнуто, приведены величины потерь на

гистерезис для двух сортов кремнистого железа (сплав вакуум-железа с кремнием):

Величина потерь на гистерезис для сплавов Fe с Si резко колеблется с изменением содержания Si, как это иллюстрируется кривыми рисунка 100.

Эти данные относятся к сплавам обычного железа с кремнием. Из кривых видно также, что минимальными потерями на гистерезис обладает сплав с процентным содержанием кремния в 1,7%. Однако, на практике содержание кремния доводят нередко до 3,5-4% (трансформаторное железо), чтобы увеличить электрическое сопротивление железа и понизить потери на токи Фуко.

Зависимость между содержанием кремния и удельным сопро­тивлением показана в таблице:

В настоящее время в электротехнической практике наиболее употребительны следующие сорта кремнистого железа: динамное. содержащее 1,7% Si, и трансформаторное, содержащее от 3,5 до 4% Si

Из других сплавов представляют осо­бенный интерес спла­вы железа с никкелем. Оба эти мате­риала в отдельности обладают высокими магнитными качества­ми, в сплаве же же­лезо и нвккель дают целый ряд материа­лов - от совершенно практически немаг­нитных до обладающих исключительно высокими магнитны­ми свойствами. Спла­вы эти отличаются еще одной особенно­стью. Именно, они в известных усло­виях обнаруживают весьма сильно выраженную неустойчивость своих магнитных свойств. Давно известная немагнитная сталь, имеющая состав 75% Fe+25% Ni, имеет при обычной температуре маг­нитную проницаемость m=1,4. Охлажденная до -200°С она оказы­вается сильно магнитным материалом и при медлен­ном нагревании может со­хранить свою магнитность и при комнатной темпера­туре. Однако, механиче­ские сотрясения опять приводят к прежней вели­чине магнитной прони­цаемости m= 1,4. Анало­гичная неустойчивость на­блюдается и у некоторых сильно магнитных сплавов железа с никкелем, о чем скажем ниже.

Интересно проследить изменение магнитных свойств рассматри­ваемых сплавов при изменении содержания Ni. Характер изменения

показан на рисунке 101.

Здесь показана наибольшая магнитная про­ницаемость как функция процентного содержания никкеля. Из этой кривой видно, что в весьма узких пределах, около 78,5% никкеля, мы имеем резкое повышение магнитной проницаемости. Сплав в 78,5% Ni+21,5% Fe называется пермаллоем. Он обладает самой высокой магнитной проницаемостью из всех известных материалов. При Н =0,06 гаусса mдоходит до 90000. Для сравнения свойств пер­маллоя и мягкого железа приведены кривые на рисунках 102 и 103, из которых следует, что для получения одной и той же индукции в слабых полях пермаллой требует приблизительно в 20 раз меньшую намагничи­вающую силу.

Однако, пер­маллой быстро насыщается, и при больших индукциях проницаемость его ниже, чем у железа. Этим в значитель­ной степени определяется область применений пермал­лоя. Ясно, что он может оказаться полезным только в тех случаях, когда мы имеем дело с очень слабыми магнитными полями. Подобные усло­вия очень часто имеют место в различных устройствах, встре­чающихся в технике слабого тока. Между прочим, ленты из пермаллоя с большим успехом приме­нены были недавно для компен­сации емкости подводных телеграф­ных кабелей по способу Крарупа. Как показывает опыт, для того чтобы пермаллой обладал надлежащими маг­нитными качествами, он должен быть подвергнут очень тщательной тер­мической обработке. При этом не­обходимо еще иметь в виду, что вы­сокие магнитные качества пермаллоя весьма неустойчивы, как было выше уже указано. Механические сотрясе­ния или хотя бы только большие механические напряжения легко раз­рушают ту структуру пермаллоя, которая обладает ценными для тех­ники свойствами. Таким образом, устройства, в которых применен пермаллой, требует очень внима­тельного к себе отношения и большой осторожности при работе с ними. Ввиду такой неустойчивости пермаллоя в некоторых слу­чаях идут на некоторое понижение магнитных качеств, лишь бы иметь более стойкий материал. Так, например, в последнее время начинают применять сплав с составом 50% Fe+50% Ni.

ОП ИСАНИЕ

ИЗОВРЕТЕН ИЯ Союэ Советсиик

С 22 С 38/16 с присоединением заявки ре—

3ЬеударстаенаМ кемнтет

АЗССР ае «анам нзеаретеннй

М. Н. Раевская, С. С. Коднер, А. А. Черняк и В.;"М. Пришлюк

Изобретение относится к металлургйи, конкретнее к изысканию магнитных сплавов на основе железа, используемых в коммутационных приборах связи.

Инвестен магнитный сплав 1) на ос5 нове железа следующего химического со става, вес. %:

Кобальт 40, 1 — 41.6

Ниобий 2,5- 3,5

Никель, 195- 205 1о"

Берий 0,2 -0,5

Вольфрам 0,05 - 0,8

Железо Остальное

Недостатком этого сплава является низкая коэрцитивная сила. 15

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является магнитный сплав(2) на основе железа следующего химичес- 20 кого состава, вес. %:

Никель 12 - 25

Железо Остальное

В качестве технологических примесей известный сплав содержит кремний и мар ганец в количестве 0,3 вес. % каждого.

Недостаток известного сплава - низкие магнитные свойства.

Бель изобретения — повышение магнит- . ных свойств.

Указанная цель достигается тем, что сплав, содержащий никель, медь и железо, содержит один или более элементов, взятых из группы, содержащей молибден, титан, ниобий, вольфрам при следующем соотношении -компонентов, вес. %:

Никель 18 -25

Один или более элементов иэ группы, содержащей молибден, титан, ниобий, вольфрам 2 - 2,5.

Железо. Остальное.

В качестве технологических примесей предлагаемый сплав содержит кремний и маргайец в количестве 0,03 вес. % каждого.

700 агае- ° ый

2, 1 1,5-3 1,2-1,4

2,5 2-4,5 1,4-1,2

2,0 2,0 1,5-4 1,3-1, 1 0,2

2,1 2,1 1,5-4 1,3-1,1 0,2

Известный

Пример. В открытой индукционной печи выплавлено 25 плавок. Из спла вов изготовлена проволока диаметром

В таблице приведены химический состав и магнитные свойства проволочных образцов длиной 200 мм в состоянии пос. ле отпуска при 530 -600оС, измеренных баллистическим.методом.

Как видно из таблицы, предлагаемый to сплав имеет более высокие значения коэрцитивной силы и магнитной проницаемости, чем известный.

Ь,з предлагаемых сплавов были изго товлены контакты гезаконов для матричных координатных соединителей. Основные параметры гезаконов:

Магнитодвижущая сила срабатывания, А 85

М агнитодвижушая сила отпускания, А

Пробивное напряжение, В

Применение предлагаемых сплавов для гезаконов позволяет повысить надежность коммутационных приборов.

2,8-4,2 1,25-1,4 0,3

1, 5-3 1,3-1,45 0,35

2,5-4,5 1,4-1,2 0,35

2,2-4 1,4-1,2 0,3

Магнитный сплав на основе железа, содержащий никель и медь, о т л ич а ю шийся тем, что, с целью повышения магнитных свойств, оч дополнительно содержит один или более элементов из группы, содержащей молибден, ти» тан, ниобий, вольфрам, при следующем соотношении компонентов, вес. %: е

5 985127 6 и з о б р е т е н и я Один ипи более элементов из группы, содержащей молибден, титан, ниобий, вольфрам 2-2,5

Железо Ос тальное

Решение научно-технических задач часто связано с поиском материалов, обладающих свойствами, которых нет у природных материалов. К таким прогрессивным разработкам можно отнести прецизионные сплавы, в частности, инвар.

Под прецизионными сплавами понимают такие металлические сплавы, которые придают выбранному основному металлу дополнительные, заранее заданные свойства. Иногда удаётся получить уникальные физические, химические или механические свойства. Итоговый результат определяется процентным соотношением каждого из металлов в сплаве. Для получения подобных сплавов используют следующие металлы: железо, никель, медь, кобальт и многие другие.

Очень интересную группу составляют прецизионные сплавы, обладающие так называемыми аномальными свойствами. Например, у них практически не изменяются, или изменяются в небольших пределах физические свойства при изменении внешних воздействий:

  • температуры внешней среды;
  • величины и свойств магнитного и электрического полей (амплитуды, частоты, фазы и поляризации);
  • увеличение или ослабление механических нагрузок;
  • воздействия реактивных сред.

Наиболее применяемых подобных сплавов насчитывается около двенадцати. Самые распространённые: инвар (магнитный сплав железа с никелем), элинвар, константан, перминвар, манганин.

Инвар получил своё название от латинского слова «неизменный». Он создан достаточно давно — ещё в 1896 году швейцарским химиком и металлургом Гийомом. Однако свойства этого сплава были оценены по достоинству гораздо позже. Сам автор за это открытие получил Нобелевскую премию по физике. Особое внимание обратили на физико-химические свойства инвара разработчики точной измерительной техники.

Физико-химические свойства инвара

Инвар — это сплав железа с никелем. Процентные соотношения этих металлов распределяются следующим образом: железо – 64%. Никель -36%. Сам сплав с латинским названием «Invar» как торговая марка зарегистрирован компанией ArcelorMital. Тем не менее, она не обладает всеми правами на изготовление инвара. В России этот сплав изготавливается по ГОСТ со своим наименованием. Наиболее распространённым и часто используемым, считается инвар 36Н.

К физически свойствам относятся:

  • Коэффициент теплового расширения. Он достаточно низкий при очень широком диапазоне температуры (от -80°C до +100°C).
  • Температура плавления. Она составляет 1430°C.
  • Предел механической прочности равен 49 кгс/мм 2 .
  • Плотность стандартного сплава составляет 8130 кг/м³,

Эти уникальные физические характеристики объясняются следующими химическими свойствами:

  • Имеет характерно выраженную однофазную структуру.
  • Маленький коэффициент теплового расширения объясняется тем, что при нагреве общее тепловое расширение компенсируется магнитострикционным снижением объёмного показателя.

Для улучшения характеристик его подвергают различным видам механической обработки. Чтобы повысить прочность проводят холодную пластическую деформацию, а затем термообработку при низкой температуре. Повышение стойкости к коррозии достигается специальной полировкой. Высокой устойчивости к воздействию агрессивной внешней среды добиваются нанесением специальных защитных покрытий.

Часто на практике применяются две разновидности инвара: суперинвар с пониженным коэффициентом линейного расширения и нержавеющий инвар, в состав которого входит железо (почти 37%), кобальт (не менее 54%), хром (около 9%).

Применение инвара

Данный сплав железа с никелем изготавливается в форме проволоки или тонкой плоской ленты. Иногда по требованию заказчика ему придают другую форму. Это могут быть: небольшие по размеру листы, прутки или лента. Улучшение свойств обеспечивается за счёт создания особых технологических условий: плавки, последующей термической обработки, специфической деформации и обработки поверхности.

Инвар используется для производства некоторых деталей приборов, измерительной и экспериментальной аппаратуры, которые не должны менять свои линейные размеры в зависимости от изменений окружающей температуры. Из этого сплава изготавливают различные датчики, преобразователи энергии, одну из составляющих биметаллических элементов. Благодаря своим характеристикам он использовался для производства эталонов длины и массы.

Инвар применяется также в бытовой технике: телевизорах, радиоприёмниках, аудио и видеомагнитофонах, некоторых моделях высокоточных маятниковых часах.

Небольшие размеры деталей, сложность и высокая стоимость производства требует аккуратного обращения с аппаратурой, имеющей в своём составе прецизионные сплавы, такие как инвар.

Разновидности инвара применяются при производстве переходов металл-стекло, мембранных ёмкостей для перевозки сжиженного газа, в микроэлектронике в качестве подложек чипов, корпусов лазерных установок, волноводов. В последнее время разработана надёжная методика сварки. Это позволило значительно расширить область его применения.

Важную роль в жизни каждого занимает металлургическая промышленность, потому что ежедневно приходится сталкиваться с различными изделиями из металла. А сделаны они из всевозможных сплавов, которые получены благодаря выплавке. При производстве этих материалов используют как минимум два металла, а для улучшения свойств - специальные присадки. В этой статье будет рассмотрено несколько сплавов железа с никелем, их свойства и применение.

О свойствах железа

Чистое железо - серебристо-серого цвета, обладает пластичностью и ковкостью. Самородные слитки, встречающиеся в природе, имеют ярко выраженный металлический блеск и значительную твердость. На высоте и электропроводность материала, он с помощью свободных электронов легко передает ток. Металл обладает средней тугоплавкостью, размягчается при температуре +1539 градусов по Цельсию и теряет ферромагнитные свойства. Это химически активный элемент. При нормальной температуре легко вступает в реакцию, а при нагревании эти свойства усиливаются. На воздухе покрывается пленкой оксида, которая мешает продолжению реакции. При попадании во влажную среду появляется ржавчина, которая уже не препятствует коррозии. Но, несмотря на это, железо и его сплавы находят широкое применение.

Немного истории

Инвар - это сплав железа с никелем, в состав которого входит 36 % легирующей добавки. Впервые он был открыт во Франции в 1896 году физиком Шарлем Гийомом. В это время он вел работы по поиску недорогого металла для эталонов мер массы и длины, которые изготовляли из очень дорогостоящего платиноиридиевого сплава. Благодаря этому открытию ученый в 1920 году получил Нобелевскую премию в области физики.

Слово «инвар» в переводе с латинского означает неизменный. Это значит, что у сплава железа с никелем коэффициент остается постоянным при широком диапазоне изменения температур - от -80 до 100 градусов по Цельсию. Этот сплав имеет и несколько других названий: нилвар, вакодил, нило-аллой, радиометалл. Invar является торговой маркой компании Imphy Alloys Inc., которая принадлежит сталелитейному концерну Arcelor Mittal.

Сплав железа с никелем

Для улучшения свойств железа, используя различные добавки, получают сплавы. Ученые считали, что получить железоникелевый сплав, учитывая термодинамические свойства металлов, не составит никакого труда. Но на практике они столкнулись с проблемами. При взаимодействии металлов, во время получения сплава железа с никелем, в результате побочного окислительного процесса железо из двухвалентного состояния переходит в трехвалентное.

В результате снижается выход сплава и ухудшаются определенные физические свойства. Для решения этой проблемы в электролит добавляют амины и органические кислоты, которые образуют с трехвалентным обладающие малой растворимостью. В связи с этим эластичность осадка становится лучше, а для его равномерного распределения электролиты перемешивают. Полученный сплав железа с никелем называется инвар.

Применение сплава инвар

Незначительный температурный коэффициент расширения позволяет использовать его для производства:

  • деталей контрольно-измерительных приборов;
  • лент и проволоки для геодезических работ;
  • несущих конструкций лазера;
  • деталей часовых механизмов, маятников хронометров;
  • проката: горячекатаного прутка и листа, холоднокатаной ленты, бесшовных труб, кованых прутков.

Для увеличения прочности производят холодную пластическую деформацию сплава железа с никелем, а затем делают низкотемпературную термообработку. Для большей стойкости к коррозии при обычных атмосферных условиях его поверхность полируют и наносят защитный слой, если изделие предназначается для использования в агрессивных средах. Антикоррозийные свойства инвара также повысятся при добавлении в его состав около 12 % хрома, при этом он сохраняет постоянную упругость при нагревании до 100 градусов.

Магнитные сплавы

Эти сплавы находят широкое применение в электротехнике. Из них изготовляют постоянные магниты, сердечники трансформаторов, электроизмерительные приборы, электромагниты. Людям давно известно, что железо обладает магнитными свойствами и в результате этого оно находит множество применений.

Много позже было обнаружено, что такое же свойство присуще никелю и некоторым другим металлам. Изделия, изготовленные из магнитного сплава железа с никелем, также обладают способностью сохранять собственное магнитное поле, когда внешнее уже отсутствует. Причем это личное поле снова способно воздействовать на другие магнитные тела.

Никель, кобальт и их сплавы

Кобальт и никель являются элементами подгруппы железа. Все три элемента имеют схожие свойства, но есть и существенные различия. Оба металла обладают большей плотностью, чем железо, и значительно тверже и прочнее его. Они менее активны в химическом плане, отличаются коррозийной устойчивостью. Кроме этого, металлы ценят за большую стойкость по отношению к

Недостатками кобальта и никеля является их высокая токсичность и значительная стоимость относительно железа. Свое применение они находят для антикоррозийного наружного покрытия изделий из углеродистых сталей и железа путем электрохимических реакций. А также они применяются для изготовления узлов и деталей, требующих усиленной прочности и твердости. Следует отметить особое значение сплавов железа, никеля и кобальта, которые носят названия коинвар, инвар, супермаллой, пермаллой и маллой. Основное их достоинство заключается в высоких магнитных свойствах. Эти сплавы используют для производства магнитопроводов различных электромагнитных устройств.

Сплав ковар

Смесь состоит из металлов, обладающих отличными механическими свойствами. Их легко обрабатывать, они без труда подвергаются прокатке, протяжке, ковке и штамповке. А сплав кобальта, никеля и железа иначе называется ковар. Удачно подобранное сочетание химических элементов обеспечивает материалу отличные характеристики. Данный сплав имеет хорошую теплопроводность, высокий коэффициент удельного электрического сопротивления и близкие к нулю показатели линейного расширения в большом интервале температур. Единственным недостатком является низкая коррозийная стойкость в сырой среде, поэтому часто используют защитные покрытия из серебра. Ковар широко применяется в промышленности для производства:

  • труб, лент и проволоки;
  • конденсаторов;
  • корпусов оборудования в приборостроении;
  • деталей в радиоэлектронике;
  • корпусов в электровакуумной отрасли.

Содержание в сплаве дорогого кобальта и никеля увеличивает стоимость материала, но хорошие характеристики и продолжительная эксплуатация покрывают первоначальные вложения.

Сплавы ални

Ални - это групповое название магнитных сплавов "железо-никель-алюминий". При увеличении концентрации алюминия и никеля в определенных пределах остаточная индукция уменьшается, а коэрцитивная сила возрастает. Чаще всего применяются сплавы, в которых алюминия от 11 до 18 %, а никеля - 20-34 %. Основными свойствами таких сплавов является электропроводность, теплопроводность и пластичность. Все они характеризуются хорошим свариванием.

Для использования сплавов при их легируют кобальтом и медью. В этом случае материал приобретает твердость и хрупкость и имеет крупнозернистую структуру. Сплавы ални применяют как конструкционный материал для деталей газотурбинных и реактивных двигателей, работающих под воздействием высоких температур более 1000 градусов Цельсия продолжительное время, сохраняя металл без повреждений.

Заключение

Все металлы, интенсивно используемые в современной промышленности, являются сплавами. Например, практически все железо, которое получают в мире, используется для производства чугунов и сталей. Объяснить это можно тем, что сплавы характеризуются лучшими свойствами, чем те металлы, из которых их получают. Следует отметить, что выпускаемые промышленностью сплавы имеют общие для них свойства: прочность, твердость, упругость и пластичность. А железоникелевые еще обладают и которые при производстве усиливаются с помощью дополнительного легирования.

Изобретение относится к металлургии, а именно к магнитным сплавам на основе железа, предназначенным для изготовления магнитопроводов трансформаторов и других магнитных элементов радиотехники и электротехники. Предложен магнитный сплав с улучшенными механическими свойствами, в который дополнительно введен никель при следующем соотношении компонентов, ат.%: никель 0,1 - 2,0; медь 0,5 - 2,0; молибден 0,5 - 5,0; ниобий 0,1 - 4,5; кремний 5 - 18; бор 4 - 12; железо остальное. Сумма компонентов молибден и ниобий составляет 2 - 5 ат.%. Для получения высокой магнитной проницаемости сплав должен обладать структурой, в которой не менее 50% кристаллитов имеют размер менее 100 нм. Также предложен магнитопровод, изготовленный из данного магнитного сплава. 2 с. и 4 з.п.ф., 1 ил., 3 табл.

Изобретение относится к металлургии, а именно к магнитным сплавам на основе железа, предназначенным для изготовления магнитопроводов трансформаторов тока, силовых трансформаторов, высокочастотных трансформаторов и других магнитных элементов радиотехники и электроники. Известен магнитный сплав , содержащий железо, медь, молибден, ниобий, кремний, бор, имеющий следующее соотношение компонентов, ат.%; медь 0,5-2,0, молибден 0,5-5,0, ниобий 0,001-4,5, кремний 12-18, бор 7-12, железо - остальное, при сумме компонентов молибден и ниобий, составляющей 2-5 ат%. Из сплава указанного состава с помощью сверхбыстрого охлаждения расплава на барабане-холодильнике получают металлическую ленту с аморфной структурой. В результате отжига в ленте формируется структура, в которой не менее 50% составляют кристаллиты размером менее 100 нм. Именно такая нанокристаллическая структура обеспечивает высокую магнитную проницаемость в магнитопроводе, изготовленном из данного сплава. Лента, полученная разливкой сплава-прототипа, обладает повышенной хрупкостью при толщине ленты около 25 мкм, так что из ленты такой толщины практически невозможно намотать магнитопроводы. Целью данного изобретения является магнитный сплав с улучшенными механическими свойствами. Указанная цель достигается тем, что в магнитный сплав, содержащий железо, медь, молибден, ниобий, кремний и бор, при сумме компонентов молибден и ниобий, составляющей 2-5%, дополнительно вводят никель при следующем соотношении компонентов, ат.%: никель 0,1-2,0, медь 0,5-2,0, молибден 0,5-5,0, ниобий 0,1-4,5, кремний 5-18, бор 4-12, железо - остальное. Добавка никеля позволяет снизить температуру плавления сплава, улучшить гомогенность расплава и его смачиваемость поверхности барабана-холодильника. Вследствие этого стабилизируется процесс получения металлической ленты, увеличивается выход годной продукции - пластичной аморфной ленты. Добавка никеля увеличивает толщину, при которой охрупчивается аморфная лента, примерно на 5 мкм. Следовательно, по сравнению с прототипом улучшаются механические свойства аморфной ленты. Обнаружено, что при добавке более 1 ат.%, толщина ленты, при которой начинается охрупчивание, уже не возрастает. С другой стороны, содержание никеля менее 0,2 ат.% почти не влияет на механические свойства ленты. Поэтому предпочтительное содержание никеля в сплаве составляет 0,2-1,0 ат%. В этом интервале никель слабо влияет на магнитные свойства и температуру кристаллизации сплава. По сравнению с прототипом несколько расширена область содержания кремния и бора. Для того чтобы получить сплавы с низкой чувствительностью магнитных свойств к сжимающим напряжениям, магнитный сплав должен содержать кремний в интервале 14-17 ат. % и бор в интервале 6-8 ат.%. Для получения магнитного сплава с высокой индукцией насыщения предпочтительно, чтобы содержание кремния составляло 7-11 ат.%, а бора 9-11 ат.%. Высокую магнитную проницаемость обеспечивает структура сплава, имеющая не менее 50% кристаллов размером менее 100 нм. В качестве прототипа выбран магнитопровод , изготовленный из ленты магнитного сплава на основе железа. Состав сплава выражается формулой (Fe 1-a Ma) 100-x- y-z-b R b Cu x Si y B z , где M - Co и/или Ni, R - по крайней мере один компонент из группы Nb, W, Ta, Zr, Hf, Ti, Mo. Численные значения индексов находятся в интервалах a = 0-0,5, b = 0,1-30, x = 0,1-3, y = 0-30, z = 0-30, (y+z) = 5-30. Одним из вариантов магнитопровода является ленточный кольцевой магнитопровод, который получают нививкой ленты на оправку круглого сечения (см. фиг. 1). При изготовлении ленточных магнитопроводов важно, чтобы лента была пластичной, поскольку хрупкая лента ломается при навивке. Для повышения пластических свойств ленты предлагается ленточный магнитопровод изготавливать из магнитного сплава, содержащего компоненты при следующем соотношении, ат. %: никель 0,1-2,0, медь 0,5-2,0, молибден 0,5-5,0, ниобий 0,1-4,5, кремний 5-18, бор 4-12, железо - остальное, причем сумма компонентов молибден и ниобий составляет 2-5 ат.%. Для получения высокой магнитной проницаемости предпочтительно, чтобы структура сплава не менее чем на 50% состояла из кристаллов размером менее 100 нм. На фиг. 1 изображен общий вид ленточного кольцевого магнитопровода. Примеры. В индукционной вакуумной печи выплавляли сплавы с разным содержанием никеля, кремния и бора. После расплавления сплава в тигле, расплав разливали на барабан-холодильник, в результате получали ленту толщиной около 25 мкм. Из начального участка ленты, имеющего значительную разнотолщинность, отбирали пробы разной толщины, которые затем изгибали на оправах различного диаметра до излома ленты. По кривым зависимости диаметра оправки, при которой происходил излом ленты, от толщины ленты определяли критическую толщину охрупчивания. Затем из ленты с различным химическим составом навивали ленточные кольцевые магнитопроводы размером 15/25-10 и отжигали их до получения в сплаве нанокристаллической структуры. После отжига на магнитопроводах измеряли магнитные свойства. В табл. 1 представлены результаты определения толщины охрупчивания аморфной ленты сплава Fe 73,5-a Ni a Cu 1 Mo 1,5 Si 13,5 B 9 в зависимости от содержания никеля. Из нее следует, что добавка никеля позволяет увеличить толщину ленты, при которой начинается охрупчивание. В табл. 2 приведены результаты измерений начальной относительной магнитной проницаемости н и магнитной индукции при напряженности магнитного поля 800 А/м (B 800) в магнитопроводах из сплава Fe 95,2-x-y Ni 0,8 Cu 1 Mo 1,5 Nb 1,5 Si x B y . Видно, что для получения магнитопроводов с высокой магнитной индукцией насыщения необходимо снижать в сплаве содержание кремния и бора. Окончательный химический состав сплава выбирают в зависимости от поставленной задачи: высокая магнитная индукция насыщения или высокая начальная магнитная проницаемость. В табл. 3 приведены результаты испытания магнитопроводов из сплава Fe 95,2-x-y Ni 0,8 Cu 1 Mo 1,5 Nb 1,5 Si x B y после отжига и после пропитки магнитопроводов клеем на основе силиката натрия и его сушки. После сушки клей создает в магнитопроводе сжимающие напряжения, которые снижают начальную магнитную проницаемость. Из табл. 3 следует, что с увеличением отношения содержания кремния к бору снижается чувствительность магнитной проницаемости к сжимающим напряжениям. Снижение чувствительности магнитных свойств магнитопровода к сжимающим напряжениям при сохранении высокого уровня этих свойств достигается при содержании кремния в интервале 14-17 ат.% и бора в интервале 6-8 ат.%.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Магнитный сплав, содержащий в качестве компонентов железо, медь, молибден, ниобий, кремний и бор, при сумме компонентов молибден и ниобий, составляющей 2 - 5 ат.%, отличающийся тем, что он дополнительно содержит никель при следующем соотношении компонентов, ат.%:

Никель - 0,1 - 2,0

Медь - 0,5 - 2,0

Молибден - 0,5 - 5,0

Ниобий - 0,1 - 4,5

Кремний - 5,0 - 18,0

Бор - 4,0 - 12,0

Железо - Остальное

2. Сплав по п.1, отличающийся тем, что его структура не менее, чем на 50% состоит из кристаллов размером менее 10 нм. 3. Сплав по п.1, отличающийся тем, что он содержит 14 - 17 ат.% кремния и 6 - 8 ат.% бора. 4. Сплав по п.1, отличающийся тем, что он содержит 7 - 11 ат.% кремния и 9 - 11 ат.% бора. 5. Ленточный магнитопровод, содержащий ленту, выполненную из магнитного сплава, содержащего в качестве компонентов никель, медь, молибден, ниобий, кремний, бор, железо, отличающийся тем, что лента выполнена из магнитного сплава, содержащего компоненты при следующем соотношении, ат.%:

Никель - 0,1 - 2,0

Медь - 0,5 - 2,0

Молибден - 0,5 - 5,0

Ниобий - 0,1 - 4,5

Кремний - 5,0 - 18,0

Бор - 4,0 - 12,0

Железо - Остальное

Причем сумма компонентов молибдена и ниобий в сплаве составляет 2 - 5 ат.%. 6. Магнитопровод по п.5, отличающийся тем, что лента выполнена из сплава со структурой, не менее чем на 50% состоящей из кристаллов размером менее 100 нм.