Бизнес портал - Гарнизон

Презентация на тему октаэдр. Презентация "правильные многогранники". Примеры правильных многогранников

Выполнила студентка группы Г 2-9 Н.Ю. Коблюк

Руководитель Е.В. Морозова

Тула 2010


«Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства»

Бертран Рассел


Многогранник называется правильным , если:

  • Он выпуклый.
  • Все его грани являются равными правильными многоугольниками.
  • В каждой его вершине сходится одинаковое число граней.
  • Все его двухгранные углы равны.

Существует всего пять правильных многогранников :

  • Тетраэдр (четырёхгранник)
  • Куб (шестигранник)
  • Октаэдр (восьмигранник)
  • Додекаэдр (двенадцатигранник)
  • Икосаэдр (двадцатигранник)

Правильный многогранник - это выпуклый многогранник с максимально возможной симметрией.


С древнейших времен наши представления о красоте связаны с симметрией. Наверное, этим объясняется интерес человека к многогранникам - удивительным символам симметрии, привлекавшим внимание выдающихся мыслителей.

История правильных многогранников уходит в глубокую древность. Изучением правильных многогранников занимались Пифагор и его ученики. Их поражала красота, совершенство, гармония этих фигур. Пифагорейцы считали правильные многогранники божественными фигурами и использовали в своих философских сочинениях.


Одно из древнейших упоминаний о правильных многогранниках находится в трактате Платона (427-347 до н. э.) «Тимаус».

Поэтому правильные многогранники также называются платоновыми телами. Каждый из правильных многогранников, а всего их пять, Платон ассоциировал с четырьмя «земными» элементами: земля (куб), вода (икосаэдр), огонь (тетраэдр), воздух (октаэдр), а также с «неземным» элементом - небом (додекаэдр).


Ко времени Платона в античной философии созрела концепция четырех элементов (стихий) – первооснов материального мира: огня , воздуха , воды и земли .

Форма куба – атомы земли, т.к. и земля, и куб отличаются неподвижностью и устойчивостью.

Форма икосаэдра – атомы воды, т.к. вода отличается своей текучестью, а из всех правильных тел икосаэдр – наиболее «катящийся».


Форма октаэдра – атомы воздуха, ибо воздух движется взад и вперед, и октаэдр, как бы направлен одновременно в разные стороны.

Форма тетраэдра – атомы огня, т.к. тетраэдр наиболее остр, кажется, что он мечется в разные стороны.

Платон вводит пятый элемент – «пятую сущность» - мировой эфир, атомам которого придается форма додекаэдра как наиболее близкому к шару.


Платоновыми телами называются правильные однородные выпуклые многогранники, то есть выпуклые многогранники, все грани и углы которых равны, причем грани - правильные многоугольники.

Платоновы тела - трехмерный аналог плоских правильных многоугольников. Однако между двумерным и трехмерным случаями есть важное отличие: существует бесконечно много различных правильных многоугольников, но лишь пять различных правильных многогранников.

около 429 – 347 гг до н.э.


выпуклый многогранник, грани которого являются правильными

многоугольниками с одним и тем же числом сторон и в каждой

вершине которого сходится одно и то же число ребер.

Икосаэдр

Тетраэдр

Октаэдр

Гексаэдр

Додекаэдр


Тело Платона

Геометрия грани

Число

Тетраэдр

Икосаэдр

Гексаэдр

Додекаэдр

Формула Эйлера Г + В – Р = 2


Поверхность тетраэдра состоит из четырех равносторонних треугольников, сходящихся в каждой вершине по три.

У правильного тетраэдра все грани являются равносторонними треугольниками, все двугранные углы при рёбрах и все трёхгранные углы при вершинах равны.


Свойства тетраэдра :

  • В тетраэдр можно вписать октаэдр, притом четыре (из восьми) грани октаэдра будут совмещены с четырьмя гранями тетраэдра, все шесть вершин октаэдра будут совмещены с центрами шести рёбер тетраэдра.
  • Тетраэдр с ребром х состоит из одного вписанного октаэдра (в центре) с ребром х/2 и четырёх тетраэдров (по вершинам) с ребром х/2.
  • Тетраэдр можно вписать в куб двумя способами, притом четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба.

Все шесть рёбер тетраэдра будут лежать на всех шести гранях куба и равны диагонали грани-квадрата.

  • Тетраэдр можно вписать в икосаэдр, притом, четыре вершины тетраэдра будут совмещены с четырьмя вершинами икосаэдра.

Правильный многогранник

Правильный треугольник

Граней при вершине

Длина ребра

Площадь поверхности


Элементы симметрии:

Тетраэдр не имеет центра симметрии,

но имеет 3 оси симметрии и 6 плоскостей симметрии

Радиус описанной сферы:

Радиус вписанной сферы:

Площадь поверхности:

Объем тетраэдра:


Куб или гексаэдр - правильный многогранник, каждая грань которого представляет собой квадрат. Частный случай параллелепипеда и призмы. Куб имеет шесть квадратных граней, сходящихся в каждой вершине по три.


Свойства куба :

  • В куб можно вписать тетраэдр двумя способами, притом четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба. Все шесть рёбер тетраэдра будут лежать на всех шести гранях куба и равны диагонали грани-квадрата.
  • Четыре сечения куба являются правильными шестиугольниками - эти сечения проходят через центр куба перпендикулярно четырём его диагоналям.
  • В куб можно вписать октаэдр, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба.
  • Куб можно вписать в октаэдр, притом все восемь вершин куба будут расположены в центрах восьми гранях октаэдра.
  • В куб можно вписать икосаэдр, при этом, шесть взаимно параллельных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра внутри куба, все двенадцать вершин икосаэдра будут лежать на шести гранях куба.

Правильный многогранник

Граней при вершине

Длина ребра

Площадь поверхности


Элементы симметрии:

Куб имеет центр симметрии - центр куба, 9 осей

симметрии и 9 плоскостей симметрии .

Радиус описанной сферы:

Радиус вписанной сферы:

Площадь поверхности куба:

Объем куба:

S = 6 a 2

V =a 3


Окта́эдр - один из пяти правильных многогранников.

Октаэдр имеет 8 граней (треугольных),

12 рёбер, 6 вершин (в каждой вершине сходятся 4 ребра).

Октаэдр имеет восемь треугольных граней, сходящихся в каждой вершине по четыре .


Свойства октаэдра :

  • Октаэдр можно вписать в тетраэдр, притом четыре (из восьми) грани октаэдра будут совмещены с четырьмя гранями тетраэдра, все шесть вершин октаэдра будут совмещены с центрами шести рёбер тетраэдра.
  • Октаэдр с ребром у состоит из 6 октаэдров (по вершинам) с ребром у:2 и 8 тетраэдров (по граням) с ребром у:2
  • Октаэдр можно вписать в куб, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба.
  • В октаэдр можно вписать куб, притом все восемь вершин куба будут расположены в центрах восьми гранях октаэдра.

Правильный многогранник

треугольник

Граней при вершине

Двойственный многогранник


Элементы симметрии:

Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.

Радиус описанной сферы:

Радиус вписанной сферы:

Площадь поверхности:

Объем октаэдра:


Икоса́эдр - правильный выпуклый многогранник, двадцатигранник, одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин - 12. Поверхность икосаэдра состоит из двадцати равносторонних треугольников, сходящихся в каждой вершине по пять.


Свойства :

  • Икосаэдр можно вписать в куб, при этом, шесть взаимно параллельных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра внутри куба, все двенадцать вершин икосаэдра будут лежать на шести гранях куба
  • В икосаэдр может быть вписан тетраэдр, притом, четыре вершины тетраэдра будут совмещены с четырьмя вершинами икосаэдра.
  • Икосаэдр можно вписать в додекаэдр притом, вершины икосаэдра будут совмещены с центрами граней додекаэдра.
  • В икосаэдр можно вписать додекаэдр притом, вершины додекаэдра будут совмещены с центрами граней икосаэдра.

Правильный многогранник

Правильный треугольник

Граней при вершине

Двойственный многогранник

додекаэдр


Элементы симметрии:

Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Радиус описанной сферы:

Радиус вписанной сферы:

Площадь поверхности:

Объем икосаэдра:


Додека́эдр (двенадцатигранник) - правильный многогранник, объёмная геометрическая фигура, составленная из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Имеет двенадцать пятиугольных граней, сходящихся в вершинах по три.


Таким образом, додекаэдр имеет 12 граней (пятиугольных), 30 рёбер и 20 вершин (в каждой сходятся 3 ребра. Сумма плоских углов при каждой из 20 вершин равна 324°.

Додекаэдр применяется как генератор случайных чисел (вместе с другими костями) в настольных ролевых играх.

Правильный многогранник

Правильный пятиугольник

Граней при вершине

Двойственный многогранник

икосаэдр


Элементы симметрии:

Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Радиус описанной сферы:

Радиус вписанной сферы:

Площадь поверхности:

Объем додекаэдра:

Правильные многогранники встречаются в живой природе. Например, скелет одноклеточного организма феодарии ( Circjgjnia icosahtdra ) по форме напоминает икосаэдр.

Чем же вызвана такая природная геометризация феодарий? По-видимому, тем, что из всех многогранников с тем же числом граней именно икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление водной толщи.

Правильные многогранники – самые «выгодные» фигуры. И природа этим широко пользуется. Подтверждением тому служит форма некоторых кристаллов.

Взять хотя бы поваренную соль, без которой мы не можем обойтись. Известно, что она растворима в воде, служит проводником электрического тока. А кристаллы поваренной соли ( NaCl ) имеют форму куба.

При производстве алюминия пользуются алюминиево-калиевыми кварцами ( K [ Al ( SO 4 ) 2 ] 12 H 2 O ), монокристалл которых имеет форму правильного октаэдра.

Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана ( FeS ). Кристаллы этого химического вещества имеют форму додекаэдра.

В разных химических реакциях применяется сурьменистый сернокислый натрий ( Na 5 ( SbO 4 ( SO 4 )) – вещество, синтезированное учёными. Кристалл сурьменистого сернокислого натрия имеет форму тетраэдра.

Последний правильный многогранник – икосаэдр передаёт форму кристаллов бора (В). В своё время бор использовался для создания полупроводников первого поколения.

Феодария

( Circjgjnia icosahtdra )


«Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук»

Л. Кэрролл


Использовались материалы:

http://www.vschool.ru

http://center.fio.ru

http://gemsnet.ru

http://alzl.narod.ru

http://ru.wikipedia.org

Использовались

«Полуправильные многогранники» - Пирамида. Правильные многогранники еще называют Платоновыми телами. Курносый додекаэдр. Тетраэдр. Икосаэдр. Куб. Правильные. Ромбоикосододэкаэдр. Перейти к следующему вопросу. Вспомним. Обучающая программа. Управляющие кнопки. Вы дали неверный ответ. Курносый куб. К какому из типов многогранников относится следующая формула V=a*b*c:

«Правильные многогранники в жизни» - История. Кусудама – бумажный цветочный шар. Евклид. Здание без углов. Примеры. Цели. Иоганн Кеплер. Достопримечательность Белоруссии. Правильные многогранники. Необычные построения. Новое чудо света. Многогранники в искусстве. Многогранники и кристаллы. Применение правильных многогранников в архитектуре.

«Виды правильных многогранников» - Механические головоломки. Египетские Пирамиды. Правильные многогранники и природа. Ученые, внесшие вклад в изучение правильных многогранников. Александрийский Маяк. Площадь икосаэдра. Основные формулы. Пифагор. Галикарнасский мавзолей. Многогранники в природе. Гексаэдр. Октаэдр. Площадь поверхности додекаэдра.

«Применение правильных многогранников» - Многогранники в искусстве. Использование в жизни. Многогранники в природе. Кеплер. Мир правильных многогранников. Группа «Историки». Евклид. Многогранники в математике. Архимед. Теорема Эйлера. История возникновения правильных многогранников. Заключение. Многогранники в архитектуре. Взаимосвязь «золотого сечения» и происхождения многогранников.

«Правильные многогранники в геометрии» - В кристаллографии существует раздел, который называется «геометрическая кристаллография». Лучи кристалла обуславливают икосаэдро-додекаэрическую структуру Земли, Гипотеза В.Макарова и В.Морозова: Тетраэдр-огонь. В местах пересечения рёбер располагаются очаги древних культур и цивилизаций, Многогранники вокруг нас.

«Симметрия правильных многогранников» - Правильный додекаэдр. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Симметрия в искусстве. Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии. Церковь Покрова Богородицы на Нерли. составлен из шести квадратов. Следовательно, сумма плоских углов при каждой вершине равна 240°.

Всего в теме 15 презентаций


Многогранник поверхность, составленная из многоугольников и ограничивающих некоторое геометрическое тело. Многогранники бывают выпуклыми и не выпуклыми многоугольников Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого многоугольника на его поверхности








Октаэдр Окта́эдр (греч. οκτάεδρον, от греч. οκτώ, «восемь» и греч.έδρα «основание») один из пяти выпуклых правильных многогранников, так называемых Платоновых тел.греч. правильных многогранников Платоновых Октаэдр имеет 8 треугольных граней, 12 рёбер, 6 вершин, в каждой его вершине сходятся 4 ребра.




Икосаэдр Икоса́эдр (от греч. εικοσάς двадцать; -εδρον грань, лицо, основание) правильный выпуклый многогранник, двадцатигранник, одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин 12. Икосаэдр имеет 59 звёздчатых форм.греч.Платоновых телтреугольникзвёздчатых форм


Додекаэдр Додека́эдр (от греч. δώδεκα двенадцать и εδρον грань),двенадцатигранник правильный многогранник, составленный из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников.греч.правильный многогранник правильных пятиугольников вершина Таким образом, додекаэдр имеет 12 граней (пятиугольных), 30 рёбер и 20 вершин (в каждой сходятся 3 ребра). Сумма плоских углов при каждой из 20 вершин равна 324°.углов











Cлайд 1

Cлайд 2

СИММЕТРИЯ В ПРОСТРАНСТВЕ “Симметрия является той идеей, посредством которой человек пытался постичь и создать порядок, красоту и совершенство” (Г.Вейль) Симметрия («соразмерность») - соответствие, неизменность (инвариантность), проявляемая при каких-либо преобразованиях. Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы, сохраняя одну точку на месте. «Витрувианский человек» Ленардо Да Винчи (1490,Венеция)

Cлайд 3

СИММЕТРИЯ В ПРОСТРАНСТВЕ Точки А и А1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА1. Точка О считается симметричной самой себе. А А1

Cлайд 4

СИММЕТРИЯ В ПРОСТРАНСТВЕ Точки А и А1 называются симметричными относительно прямой (ось симметрии), если прямая проходит через середину отрезка АА1 и перпендикулярна этому отрезку. Каждая точка прямой а считается симметричной самой себе. А1

Cлайд 5

СИММЕТРИЯ В ПРОСТРАНСТВЕ Точки А и А1 называются симметричными относительно плоскости (плоскость симметрии), если эта плоскость проходит через середину отрезка АА1 и перпендикулярна этому отрезку. Каждая точка плоскости считается симметричной самой себе

Cлайд 6

СИММЕТРИЯ В ПРОСТРАНСТВЕ Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры. Если фигура имеет центр (ось, плоскость) симметрии, то говорят, что она обладает центральной (осевой, зеркальной) симметрией

Cлайд 7

ПРИМЕРЫ СИММЕТРИИ ПЛОСКИХ ФИГУР Параллелограмм имеет только центральную симметрию. Его центр симметрии – точка пересечения диагоналей Равнобокая трапеция имеет только осевую симметрию. Её ось симметрии – перпендикуляр, проведенный через середины оснований трапеции Ромб имеет и центральную, и осевую симметрию. Его ось симметрии – любая из его диагоналей; центр симметрии – точка их пересечения

Cлайд 8

ПРАВИЛЬНЫЕ МНОГОГРАННИКИ - 5 ПЛАТОНОВЫХ ТЕЛ Обитатели даже самой отдаленной галактики не могут играть в кости, имеющие форму неизвестного нам правильного выпуклого многогранника. М. Гарднер Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники и в каждой его вершине сходится одно и то же число ребер. Также все ребра правильного многоугольника равны, как и все двугранные углы, содержащие две грани с общим ребром. Правильного многогранника, гранями которого являются n-угольники при n > или = 6, не существует!

Cлайд 9

ПРАВИЛЬНЫЙ ТЕТРАЭДЕР Составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Сумма плоских углов при каждой вершине ровна 180°. Элементы симметрии: Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии. S полн Объем Высота Вершин – 4 Граней – 6 Ребер – 4

Cлайд 10

КУБ Составлен из шести квадратов. Каждая вершина куба является вершиной трех квадратов. Сумма плоских углов при каждой вершине ровна 270°. 6 граней, 8 вершин и 12 ребер Элементы симметрии: Куб имеет центр симметрии - центр куба, 9 осей и плоскостей симметрии R опис. окр. S полн r впис. окр

Cлайд 11

ПРАВИЛЬНЫЙ ОКТАЭДР Составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников. Сумма плоских углов при каждой вершине равна 240°. Элементы симметрии: Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии 8 граней 6 вершин 12 ребер

Правильные и полуправильные многогранники

В своей деятельности человек повсюду сталкивается с необходимостью изучать форму, размеры, взаимное расположение пространственных фигур. Важный класс тел образуют многогранники – тела, граница которых состоит из многоугольников. В необъятном океане многогранных форм выделяются своим совершенством пять правильных многогранников, или Платоновых тел.

Многогранник - геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями.

Стороны граней называются ребрами многогранника, а концы ребер - вершинами многогранника. По числу граней различают четырехгранники, пятигранники и т. д.

Многогранник называется выпуклым, если он весь расположен по одну сторону от плоскости каждой из его граней. Выпуклый многогранник называется правильным, если все его грани - правильные одинаковые многоугольники и все многогранные углы при вершинах равны.

Тетраэдр (от греческого tetra – четыре и hedra – грань) - правильный многогранник, составленный из 4 равносторонних треугольников.

Кристаллы белого фосфора образованы молекулами Р4, Такая молекула имеет вид тетраэдра. Молекулы зеркальных изомеров молочной кислоты также являются тетраэдрами. Кристаллическая решётка метана имеет форму тетраэдра. Метан горит бесцветным пламенем. С воздухом образует взрывоопасные смеси. Используется как топливо.

Сфалерит - сульфид цинка (ZnS). Кристаллы этого минерала имеют форму тетраэдров, реже – ромбододекаэдров

Куб (гексаэдр)

Каждая из 8 вершин куба является вершиной 3 квадратов.

У куба 12 ребер, имеющих равную длину.

Центром симметрии куба является точка пересечения его диагоналей. Через центр симметрии проходят 9 осей симметрии. Ось симметрии куба может проходить либо через середины параллельных ребер, не принадлежащих одной грани, либо через точку пересечения диагоналей противоположных граней.

Куб передает форму кристаллов поваренной соли NaCl.

Форму куба имеют кристаллические решётки многих металлов (Li , Na , Cr , Pb , Al , Au , и другие)

Октаэдр (от греческого okto – восемь и hedra – грань) – правильный многогранник, составленный из 8равносторонних треугольников.

Форму октаэдра имеет монокристалл алюмокалиевых кварцев, формула которого K (AL (SO 4)2) * 12 H 2 O . Они применяются для протравливания тканей, выделки кожи.

Одним из состояний полимерной молекулы углерода, наряду с графитом,является алмаз Алмазы обычно имеют октаэдр в качестве формы огранки.

Алмаз (от греческого adamas – несокрушимый) – бесцветный или окрашенный кристалл с сильным блеском в виде октаэдра.

Кристаллы алмаза представляют собой гигантские полимерные молекулы и обычно имеют форму огранки октаэдра, ромбододекаэдра, реже - куба или тетраэдра.

Додекаэдр (от греческого dodeka – двенадцать и hedra – грань) это правильный многогранник, составленный из двенадцати равносторонних пятиугольников. Додекаэдр имеет 20 вершин и 30 ребер

Вирус полиомиелита имеет форму додекаэдра. Он может жить и размножаться только в клетках человека и приматов.

На микроскопическом уровне, додекаэдр и икосаэдр являются относительными параметрами ДНК. Можно увидеть также, что молекула ДНК представляет собой вращающийся куб. При повороте куба последовательно на 72 градуса по определённой модели, получается икосаэдр, который, в свою очередь, составляет пару додекаэдру. Таким образом, двойная нить спирали ДНК построена по принципу двухстороннего соответствия: за икосаэдром следует додекаэдр, затем опять икосаэдр, и так далее. Это вращение через куб создаёт молекулу ДНК.

В книге Дана Уинтера «Математика Сердца» (Dan Winter, Heartmath) показано, что молекула ДНК составлена из взаимоотношений двойственности додекаэдров и икосаэдров.

Икосаэдр - правильный выпуклый многогранник, составленный из 20 правильных треугольников. У икосаэдра 30 ребер.

В одном из своих диалогов Платон связал правильные многогранники с 4я стихиями. Тетраэдру соответствовал огонь, кубу – земля, октаэдру - воздух, икосаэдру – вода. Додекаэдру соответствовала пятая стихия – эфир.

Правильных многоугольников бесконечно много: при каждом n =>3 имеется правильный n – угольник(причем только один, с точностью до подобия). Правильных многогранников всего пять.

Пожалуй, важнейшее свойство выпуклых многогранников было обнаружено Рене Декартом около 1620г. ту же формулу переоткрыл Леонард Эйлер, когда занимался описанием типов выпуклых многогранников в зависимости от числа их вершин.

Пусть В -- число вершин выпуклого многогранника, Р -- число его рёбер и Г -- число граней. Тогда верно равенство В-Р+Г=2.

Это число называется эйлеровой характеристикой многогранника.

Но на пяти правильных телах история многогранников не остановилась. Вслед за правильными телами Платона были открыты полуправильные тела Архимеда.

Архимедовыми телами называются полуправильные, однородные выпуклые многогранники, то есть выпуклые многогранники, все многогранные углы которых равны, а грани - правильные многогранники нескольких типов (этим они отличаются от платоновых тел, грани которых - правильные многоугольники одного типа). Открытие тринадцати полуправильных выпуклых многогранников приписывается Архимеду. Теорией этих тел занимался также Иоган Кеплер.

Простейшим примером архимедова многогранника может служить архимедова призма, т. е. правильная n-угольная призма с квадратными боковыми гранями.

Другой пример - так называемая п-угольная архимедова антипризма. Она может быть получена, если одно из оснований правильной n-угольной призмы (n>4) повернуть вокруг оси призмы на угол - и затем соединить отрезками каждую вершину этого основания с ближайшими вершинами другого основания; при этом высота призмы должна быть подобрана так, чтобы эти отрезки оказались равными стороне основания (иначе говоря, боковые грани антипризмы должны быть правильными треугольниками). Меняя n, мы получим две бесконечные серии архимедовых многогранников-призм и антипризм.

Самые простые фигуры получаются из правильных многогранников путём «усечения», состоящим в отсечении плоскостями углов многогранника.

Если срезать углы тетраэдра плоскостями, каждая из которых отсекает третью часть его рёбер, выходящих из одной вершины, то получим усечённы тетраэдр, имеющий восемь граней. Из них четыре – правильные шестиугольники и четыре – правильные треугольники. В каждой вершине этого многогранника сходятся три грани.

Обратим внимание на то, что поверхность футбольного мяча изготавливают в форме поверхности усечённого икосаэдра

Второй способ получения полуправильных многогранников заключается в отсекании частей куба плоскостью проходящей через середины его рёбер, выходящих из одной вершины. В результате получаем полуправильный многогранник, который называется кубооктаэдр. Его гранями являются шесть квадратов, как у куба, и восемь правильных треугольников, как у октаэдра.

Третий способ заключается в совмещение первого и второго метода. Отсекающие плоскости провести через середины рёбер, выходящих из одной вершины и операция «усечения».

Любопытно, что во второй половине XX в. было обнаружено еще одно тело Архимеда - псевдоромбокубооктаэдр, которое не может быть получено путем однотипных усечений тела Платона и поэтому в течение 2000 лет оставалось незаме­ченным.

В конце 50-х - начале 60-х годов XX века несколько математиков практически одновременно, независимо друг от друга указали на существование псевдоромбокубооктаэдра. Псевдоромбокубооктаэдр состоит из граней куба и октаэдра, к которым добавлены ещё 12 квадратов.

Весьма оригинальна космологическая гипотеза немецкого астронома Иоганна Кеплера, в которой он связал некоторые свойства Солнечной системы со свойствами правильных многогранников. Кеплер предположил, что расстояния между шестью известными тогда планетами выражаются через размеры пяти правильных выпуклых многогранников. Между каждой парой "небесных сфер", по которым, согласно этой гипотезе, вращаются планеты, Кеплер вписал одно из Платоновых тел. Вокруг сферы Меркурия, ближайшей к Солнцу планеты, описан октаэдр. Этот октаэдр вписан в сферу Венеры, вокруг которой описан икосаэдр. Вокруг икосаэдра описана сфера Земли, а вокруг этой сферы - додекаэдр.

Додекаэдр вписан в сферу Марса, вокруг которой описан тетраэдр. Вокруг тетраэдра описана сфера Юпитера, вписанная в куб. Наконец, вокруг куба описана сфера Сатурна. Эта модель выглядела для своего времени довольно правдоподобно. На данный момент эта теория полностью отвергнута.

Звёздчатый октаэдр. Он был открыт Леонардо Да Винчи, затем спустя почти 100 лет переоткрыт И.Кеплером, и назван им "Stella octangula" – звезда восьмиугольная. Отсюда октаэдр имеет и второе название "stella octangula Кеплера". У октаэдра есть только одна звездчатая форма. Её можно рассматривать как соединение двух тетраэдров.

Большой звездчатый додекаэдр принадлежит к семейству тел Кеплера-Пуансо, то есть правильных невыпуклых многогранников. Грани большого звездчатого додекаэдра – пентаграммы, как и у малого звездчатого додекаэдра. У каждой вершины соединяются три грани. Вершины большого звездчатого додекаэдра совпадают с вершинами описанного додекаэдра. Большой звездчатый додекаэдр был впервые описан Кеплером в 1619 г.

Кеплер не додумался, что у полученной им фигуры есть двойник. Многогранник, который называется «большой додекаэдр» - построил французский геометр Луи Пуансон спустя двести лет после кеплеровских звездчатых фигур.

Звёздчатый икосаэдр . Икосаэдр имеет двадцать граней. Если каждую из них продолжить неограниченно, то тело будет окружено великим многообразием отсеков – частей пространства, ограниченных плоскостями граней. Все звездчатые формы икосаэдра можно получить добавлением к исходному телу таких отсеков. Не считая самого икосаэдра, продолжения его граней отделяют от пространства 20+30+60+20+60+120+12+30+60+60 отсеков десяти различных форм и размеров. Большой икосаэдр (см. рис) состоит из всех этих кусков, за исключением последних шестидесяти.

Икосододекаэдр имеет 32 грани из которых 12 являются правильными пятиугольными гранями, а остальные 20 – правильные треугольники.

Правильные многогранники на протяжении всей истории человечества не переставали восхищать пытливые умы симмет­рией, мудростью и совершенством своих форм.